ON RIESZ SPACES WITH b-PROPERTY AND b-WEAKLY COMPACT OPERATORS
نویسندگان
چکیده
An operator T : E → X between a Banach lattice E and a Banach space X is called b-weakly compact if T (B) is relatively weakly compact for each b-bounded set B in E. We characterize b-weakly compact operators among o-weakly compact operators. We show summing operators are b-weakly compact and discuss relation between Dunford–Pettis and b-weakly compact operators. We give necessary conditions for b-weakly compact operators to be compact and give characterizations of KB-spaces in terms of b-weakly compact operators defined on them.
منابع مشابه
Some properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملRiesz Type Theorem in Locally Convex Spaces
The present paper is concerned with some representatons of linear mappings of continuous functions into locally convex vector spaces, namely Theorem. If X is a complete Hausdorff locally convex vector space, then a general form of weakly compact mapping T : C[a, b] → X is of the form Tg = ∫ b a g(t)dx(t), where the function x(·) : [a, b] → X has a weakly compact semivariation on [a, b]. This th...
متن کاملParacompactness on supra topological spaces
In this article, we present the concept of supra paracompact spaces and study its basic properties. We elucidate its relationship with supra compact spaces and prove that the property of being a supra paracompact space is weakly hereditary and topological properties. Also, we provide some examples to show some results concerning paracompactness on topology are invalid on supra topology. Finally...
متن کاملThe G-fredholm Property of the ∂̄-neumann Problem
Let H1 and H2 be Hilbert spaces and let B(H1,H2) be the space of bounded linear operators A : H1 → H2. An operator A ∈ B(H1,H2) is said to be Fredholm if first, the kernel ofA is finite-dimensional, and second the image ofA is closed and has finite codimension. An application of the open mapping theorem shows that the closedness requirement on the image is redundant. A well-known example of Fre...
متن کامل